Utjecaj necentriranosti pumpe na naprezanje usisnog i tlačnog cjevovoda

Nakon montaže pumpe i elektromotora, a prije pokretanja u rad, obavezno je izvršiti centriranje ili poravnavanje čitavog pumpnog agregata. Necentriranost pumpnog agregata dovodi do naprezanja usisnog i tlačnog cjevovoda na prirubničkim spojevima, što rezultira unutarnjim naprezanjem ležajeva pumpe, pretjeranim trošenjem mehaničke brtvenice, ležajeva elektromotora i kraćim radnim vijekom spojke. Nije isključeno i da će pumpa slabije postizati potrebne radne parametre.

Na slici 1. prikazan je pumpni agregat za prepumpavanje radnog medija iz spremnika prema izmjenjivaču u tehnološkom procesu. Pumpni agregat se sastoji od elektromotora, spojke i jednostupanjske centrifugalne pumpe smještenih na zajednički temelj. Na usisnu i tlačnu prirubnicu pumpe spojene su prirubnice usisnog i tlačnog cjevovoda gdje su potencijalna mjesta koncentracije najvećeg naprezanja ako pumpni agregat nije ispravno centriran. Prirubnički spojevi označeni su žuto na slici.

Slika 1. Pumpni agregat spojen na usisni i tlačni cjevovod

Da bi izbjegli štetnu pojavu naprezanja, potrebno je pridržavati se nekih općih smjernica prilikom montaže pumpnog agregata i spajanja usisnog i tlačnog cjevovoda:

  1. Prirubnice cjevovoda koje se spajanju s prirubnicama pumpe moraju biti međusobno poravnate tako da razmak među njima ne prelazi debljinu 2 brtve ili da razmak među prirubnicama ne prelazi dimenzije za montažu preporučene od strane poizvođača pumpe poput spoja prikazanog na slici 2.
Slika 2. Pravilno montiran prirubnički spoj

2. Vijci i matice montirani na prirubnice moraju se montirati bez zapinjanja ili prisilnog namještavanja.

3. Prilikom poravnavanja prirubnice cjevovoda i prirubnice pumpe ne smiju se koristiti pajseri, šipke i ručne dizalice.

4. Bitno je da svi izvođači radova slijede kompanijske procedure (ako postoje) prilikom montaže prirubničkih spojeva da bi se izbjeglo naprezanje cjevovoda.

5. Obavezno treba napraviti lasersko centriranje vratila pumpe i vratila elektromotora prema navedenim granicama proizvođač, kompanijskih standarda i dobre inženjerske prakse.

6. Potom odspojiti prirubnice usisnog i tlačnog cjevovoda od usisne i tlačne prirubnice na pumpi, ukloniti brtve i vijke.

7. Ponovno laserski provjeriti centriranost vratila pumpe i elektromotora. Sada ćete imati jednu od 2 situacije:

1) nema promjene što se tiče centriranosti pumpnog agregata. To je sjajna vijest jer znači da nema prisutnog naprezanja cjevovoda.

2) došlo je do promjene u centriranosti pumpnog agregata što je loša vijest jer imate naprezanje cjevovoda i treba otkriti što je uzrokovalo naprezanje cjevovoda te ga otkloniti. Nako toga ponovno centrirati pumpni agregat.

8. Napraviti protokol o centriranju koji potvrđuje da su pogonski i pogonjeni stroj ispravno centrirani i potpisati se.

Naprezanje usisnog i tlačnog cjevovoda nije nimalo bezopasno i za sobom povlači brojne negativne utjecaje za stroj. Npr. kvarovi ležajeva na pumpi i elektromotoru nastali kao posljedica naprezanja cjevovoda mogu biti:
Trošenje materijala uzrokovano propuštanjem na brtvama
• Trošenje uzrokovano vibracijama
• Preopterećenje u stanju mirovanja
• Korozija uzrokovana neadekvatnim podmazivanjem zbog nedozvoljenog opterećenja i propuštanja na brtvama
• Ljuštenje materijala na površinama, uzrokovano necentriranosti i pretjeranim opterećenjem

Na koji način provjeravate naprezanje u cjevovodima? Koji dijagnostički sustav primjenjujete? Koliko kvarova ste imali kao posljedicu naprezanaj cjevovoda? Podijelite iskustva u komentarima!

Osnove preventivnog održavanja zračnih hladnjaka

Zračni hladnjaci su vrsta strojarske opreme namijenjena pothlađivanju vršnih produkata koji izlaze iz kolona ili posuda i usmjeravaju se u druge etape procesa prerade. U procesnoj industriji se najčešće koristi tip zračnih hladnjaka sa prisilnim strujanjem.

Najveća prednost ovakvih izmjenjivača topline je što nema potrebe za rashladnom vodom jer se izmjena topline vrši direktno sa zrakom iz okoline. Druga prednost je sama veličina izmjenjivača koja može varirati od malih izmjenjivača ugrađenih u osobne automobile do izmjenjivača koji se koriste za hlađenje kondenzata parne turbine snage 1,2 MW. Na slici 1. prikazani su sastavni dijelovi jednog izmjenjivača zračnog hladnjaka.

Slika 1. Izmjenjivač zračnog hladnjaka sa prisilnim strujanjem zraka (Izvor)

  1. Ventilator  2. Zaštitni prsten  3. Nosiva konstrukcija 4. Mlaznica 5. Distributor radnog medija 6. Cijevni snop  7. Pogonski stroj-elektromotor   8. Nosač  9. Kanal za usmjeravanje strujanja zraka

Ventilator je pokretan elektromotorom pa uzrokuje prisilno strujanje zraka među cijevima cijevnog snopa i na taj način dovodi do izmjene topline. Radi redundancije obično se ugrađuju po 2 ventilatora sa elektromotorima. Jednolika distribucija zraka među cijevima je važna za kontinuiranu i predvidljivu izmjenu topline. To se postiže gubitkom statičkog tlaka duž cijevnog snopa. Dobra inženjerska praksa je ostvariti minimalno 40% pokrivenosti cijevnog snopa sa površinom koju „prebrišu“ lopatice prilikom vrtnje ventilatora jer je tada gubitak statičkog tlaka jednak do 3.5 puta brzini strujanja zraka kroz zaštitni prsten. Ako imamo 2 ventilatora, tada omjer duljine cijevi u cijevnom snopu i širine snopa treba biti 3 do 3.5, pri čemu cijevi moraju biti položene u 4 reda po visini konstrukcije. Na slici 2. su prikazani sastavni dijelovi sklopa ventilatora.

Slika 2. Sastavni dijelovi ventilatorskog sklopa (Izvor)
1. Prirubnica na glavčini,  2. Stezaljke za montažu lopatice na glavčinu,  3. Vijci za pričvršćivanje,  4. Matice,  5. Lopatica,  6. Glavčina

Promjer lopatica može varirati od 900 mm do 8000 mm, dok se broj lopatica kreće od 2 do 20 i uvijek su prisutne u parnom broju radi postizanja dinamičke ravnoteže prilikom vrtnje. U procesu prerade nafte ventilatori  obično imaju 4 do 6 lopatica, nešto rijeđe ih imaju po 8. Lopatice se izrađuju od čelika, aluminija ili ojačanog fiberglasa, pri čemu poprečni presjek može biti pun ili šuplji.

Lopatice su fiksne ili podesive, tada se podešavanje vrši ručno kada je ventilator obustavljen ili automatski dok je ventilator u radu. Automatsko podešavanje vrši se primjenom pneumatske dijafragme koja se oslanja na oprugu smještenu u glavčini ventilatora, pritom je potreno imati dotok tehničkog zraka.

Cijevni snop se sastoji od točno određenog broja cijevi montiranih unutar zajedničkog okvira. Površina cijevi izložena je strujanju zraka i prekrivena tankim pločicama što omogućava povećanje površine podložne hlađenju i kompenzira nisku razinu izmjene topline sa okolnim zrakom pri atmosferskom tlaku i pri nižoj brzini vrtnje ventilatora da bi se postigla razumna potrošnja električne energije za pokretanje elektromotora. Cijevni snopovi se izrađuju od konstrukcijskih materijala prikladnih za primjenu u naftnoj industriji tj. materijala otpornih na koroziju uz ograničenje tlaka i temperature. Pločice se na cijevi montiraju okomito ili helikoidalno, što je prikazano na slici 3., najčešće se izrađuju od aluminija zbog niske cijene i dobre termičke vodljivosti.

Slika 3. Pločice montirane na cijevi

Pouzdanost i termička efikasnost zračnih hladnjaka ovisi o konstrukciji i o načinu održavanja mehaničkih dijelova. Svaki zračni hladnjak ima do 3 ventilatora pokretana elektromotorima. Ventilator i elektromotor mogu biti povezani remenskim prijenosom (zupčastim ili klinastim remenom) ili preko reduktora. Remenski  prijenos ima po 2 ležaja na strani elektromotora i još 2 ležaja na strani ventilatora koje treba redovito podmazivati mašću, po preporuci većine proizvođača interval podmazivanja je jednom mjesečno ako su ventilatori u kontinuiranom radu 24/7. Kada se uklanja stara mast, ostatke treba pregledati u potrazi za prisutnošću metalnih čestica. Ako se nađu metalne čestice, to može ukazivati na pojačano trošenje.  Zategnutost remenskog prijenosa treba redovito provjeravati, najčešće svakih 6 tjedana te pritom detaljno vizualno pregledati remene u potrazi za tragovima trošenja.

Kada je ventilator u radu, prilikom dnevnih obilazaka opreme u postrojenju, treba obratiti pažnju na zvuk. Nepravilan i/ili lupajući zvuk ukazuje da je došlo do problema sa ležajevima pa je potrebno isključiti ventilator iz rada. Zvuk cviljenja ukazuje na proklizavanje i istrošenost remena pa ih je potrebno čim prije zamijeniti. Redovita vizualna kontrola dijelova ventilatora kada je isključen iz rada te provjera ima li prisutnih tragova maziva i prljavštine omogućava pravovremeno otkrivanje i spriječavanje potencijalnih problema sa podmazivanjem.

Praćenje temperature radnog medija pomoću termometara ugrađenih prije i nakon izmjenjivača pokazuje učinkovitost hlađenja te ispravnost rada ventilatorskog agregata. U slučaju aktivacije alarma zbog premale razlike u temperaturi, potrebno je obustaviti stroj i napraviti provjere. Također, potrebno je periodički napraviti termovizijsko snimanje elektromotora i reduktora, ukoliko ventilator ima takvu vrstu prijenosa. Na slici 4. prikazan je termovizijski snimak reduktora i elektromotora jednog procesnog izmjenjivača topline.

Slika 4. Termovizijska snimka elektromotora (lijevo) i reduktora (desno) koji pokreću ventilator zračnog hladnjaka

Jednom godišnje potrebno je pregledati ventilator tako da se detaljno pregledaju lopatice po čitavoj dužini te spojevi sa glavčinom za slučaj da ima prisutnih pukotina, tragova trošenja ili pojačanog trenja. Kod vijaka koji spajaju lopaticu sa glavčinom potrebno je provjeriti moment dotezanja, ako nije u skladu sa momentima preporučenim od strane proizvođača treba ponovno izvršiti dotezanje. U tablici su prikazani momenti dotezanja ovisno o veličini vijaka i matica koji se koriste za pričvršćivanje lopatice na glavčinu preporučeni od strane proizvođača ventilatora (Izvor).

Nakon toga slijedi provjera kuta nagiba lopatica i po potrebi podešavanje. Ventilator koji radi sa samo jednom od lopatica pod neodgovarajućim kutem nagiba, uzrokovat će smanjenje efikasnosti pothlađivanja radnog medija u izmjenjivaču do 3%. Kut nagiba treba podesiti prema vrijednostima navedenim u korisničkom priručniku, zato što se vrijednosti razlikuju od proizvođača do proizvođača.

Prilikom zamjene lopatica novima ili prilikom demontaže postojećih lopatica, potrebno je izvršiti vaganje svake lopatice. Sve lopatice moraju imati jednaku masu radi postizanja dinamičke ravnoteže prilikom vrtnje te ravnomjernog opterećenja glavčine i posljedično tome, remenica i remenskog prijenosa.

Sljedeća provjera je kreću li se sve lopatice u istoj ravnini unutar zaštitnog prstena, na slici 1. prikazani su pod pozicijama 1 i 2. Tada također treba ispitati jesu li svi rubovi lopatica jednako udaljeni od unutrašnjeg promjera zaštitnog prstena. Ventilatori novijeg datuma proizvodnje također imaju ugrađenu kočnicu za sprječavanje oštećenja remenskog spoja koja ujedno predstavlja sigurnosnu mjeru od neovlaštenog pokretanja ventilatora u rad dok djelatnici vrše održavanje.

Jednom godišnje također treba dobro oprati cijevni snop kako bi se otklonile nakupljene naslage prašine i prljavštine koje djeluju kao izolator na cijevima i na pločicama, čime se smanjuje dostupna površina za izmjenu topline a time i efikasnost hlađenja.

Koje metode preventivnog održavanja primjenjujete za zračne hladnjake? Koliko ste zadovoljni postojećim stanjem? Podijelite svoja iskustva u komentarima!

10 preporuka za ispravno korištenje moment ključa

Ispravno korištenje alata ima veliku važnost u popravcima strojeva i opreme. Pogrešna upotreba alata prilikom sastavljanja stroja uzrokuje kraći radni vijek stroja i predstavlja opasnost za sigurnost djelatnika i okoliša jer je stalno prisutan rizik od neočekivane havarije. U ekstremnim slučajevima, stroj može zaribati, eksplodirati ili se razletjeti. Najčešći kvarovi nastali kao posljedica pogrešne upotrebe alata su otkazivanje ležajeva zbog smanjene zračnosti, pojava inicijalnih pukotina na kućištu zbog prejake zategnutosti vijaka, labavost dijelova zbog neodgovarajućeg momenta dotezanja te prenapregnutost vijčanih spojeva na prirubnicama.


Glavni način sprječavanja ovakvih kvarova je pravilna upotreba moment ključa, preciznog alata konstruiranog tako da se primjeni odgovarajuća sila dotezanja na spoj. Na tržištu postoje mehanički i električni/pneumatski moment ključevi, pri čemu ćemo u današnjem članku razmatrati pravilnu upotrebi mehaničkog tipa. Neovisno o tome dotežu li se matice na vijcima na kućištu centrifugalne pumpe ili matice na vijcima bloka dizel motora s 8 cilindara, važno je pravilno koristiti moment ključ. Svaki proizvođač strojeva i opreme u korisničkom priručniku s uputama za rad i održavanje daje raspon dozvoljenih momenata, definira redoslijed dotezanja i kazuje koliko puta treba dotegnuti ili olabaviti maticu da bi djelovanje sile na površine bilo jednoliko raspoređeno. Tablica prikazuje primjere vrijednosti momenata dotezanja za vijčane spojeve na brodskom dizel motoru.

Treba voditi računa o podmazivanju navoja te starosti korištenih vijaka i matica, s obzirom na to da utječu na moment dotezanja. Npr. kada se radi o dotezanju vijčanih spojeva na opremi koja radi pod visokim temperaturama i tlakovima, pravilo struke je da se svaki put koriste potpuno novi vijci i matice preuzeti sa skladišta te posebna vrsta masti.

Preporuke za ispravno korištenje moment ključa:

  1. Pridržavajte se uputa proizvođača moment ključa za smjer dotezanja, odgovarajuće sile, redoslijeda dotezanja, korištenja maziva ili Molykote paste na navojima te ciklusa stezanja/otpuštanja.
  2. Koristite moment ključ za primjenu određenog momenta na vijčane spojeve prilikom završne faze sastavljanja strojeva ili opreme. Nemojte koristiti moment ključa kao primarni i jedini alat za dotezanje i otpuštanje vijčanih spojeva.
  3. Nemojte prijeći raspon ograničenja moment ključa. Pouzdanost mjerenja se temelji na postotku radnog raspona pri čemu većina mehaničkih ključeva ima radni raspon od 20% do 100%. Električni moment ključevi imaju raspon od 10% do 100%.
  4. Nemojte koristiti produžetak ručke ili dodatne poluge prilikom dotezanja, osim ako to nije propisao proizvođač moment ključa. Svaki moment ključ ima specifičnu duljinu pa ga je potrebno obuhvatiti na sredini ručke. Ako se koriste obje ruke, tada obuhvatite sredinu ručke jednom rukom preko druge.
  5. Okrećite moment ključ polagano i ujednačeno. Nemojte raditi nagle pokrete, tresti ključ ili naglo povlačiti.
  6. Kada moment ključ prilikom dotezanja napravi “klik” ili kada se oglasi signalom (ako radite sa električnim moment ključem) znači da ste dotegli vijčani spoj traženim momentom i da trebate prestati s dotezanjem.
  7. Redovito pregledavajte alat u potrazi za prisutnostima znakova oštećenja ili trošenja. Zamijenite nastavke/gedore koji su oštećeni.
  8. Izbjegavajte bacanje ili ispadanje moment ključa na tvrde površine jer udarci mogu uzrokovati poremećaj kalibracije. Ako sumnjate u ispravnost kalibracije zbog pada ključa, pošaljite ga na ispitivanje ovlaštenom servisu ili proizvođaču.
  9. Moment ključ uvijek čuvajte u kutiji zaštićen od vlage, utjecaja topline, korozivne atmosfere i prašine kada nije u upotrebi. Ako imate tip“klik”moment ključa , spremite ga tako da ste prethodno radni raspon podesili na najnižu vrijednost.
  10. Jednom godišnje ili nakon svakih 5 000 ciklusa (ovisno što nastupi prvo) kalibrirajte moment ključ kod ovlaštenog servisera. Vodite evidenciju kada je moment ključ bio kalibriran. Ako ste i sami ovlaštena servisna radiona i želite dobiti npr. ISO certifikat, ovlaštene certifikacijske kuće će prilikom pregleda radione između ostaloga tražiti na uvid certifikate o umjeravanju preciznog alata pa je neophodno da imate ažurne sve potvrde o kalibriranju.

Ispravna upotreba alata i održavanje alata u ispravnom stanju doprinose bržem popravku, pouzdanom radu i produžavanju radnog vijeka strojeva i opreme nakon popravka te nižim troškovima održavanja. Korake opisane u ovom članku pogledajte i u kratkom videu.

Koliko često održavate alate koje svakodnevno koristite? Koliko često koristite moment ključeve? Podijelite svoja iskustva u komentarima!

18 pitanja važnih za analizu vibracija

Mjerenja vibracija kod rotacijski strojeva je jedan od alata dijagnostike i prediktivnog održavanja kojim pratimo stanje stroja i planiramo otklanjanje kvara prije nego se dogodi jer smo upoznati sa zdravljem njegovih dijelova. Često stroj ima konstantno povećane vibracije, međutim inženjer strojnog održavanja ne može odmah otkriti o kojem se problemu radi i što je uzrokovalo povećanje vibracija unutar strojnog sustava.

Danas ćemo razmotriti 18 pitanja primjenom kojih će si održavatelji pomoći u svakodnevnom radu i tumačenju prikupljenih podataka o vibracijama kako bi na vrijeme otkrili potencijalni uzrok kvara i poduzeli potrebne aktivnosti u njegovom sprječavanju. 

1. Jeste li panično zaustavili stroj na prvi neobičan zvuk? Kada primijetite odstupanja u radu (ako nisu takva da jasno ugrožavaju zdravlje, sigurnost i okoliš), nemojte odmah isključiti stroj već napravite dijagnostičku provjeru mjerenjem vibracija, termovizijskim snimanjem, ultrazvučnim ispitivanje ili nekom trećom neinvazivnom tehnikom te analizirajte dobivene rezultate.

2. Jesu li se povećane vibracije javile nakon pokretanja stroja u rad iz stanja mirovanja? Kakvi zahvati su poduzeti na strojnom sustavu ili pratećoj opremi dok je stroj bio u mirovanju? Je li npr. montirano novo vratilo, nova zaporna armatura ili su izvođeni građevinski zahvati u blizini stroja? Potencijalni uzroci vibracija mogu potjecati od promjena nastalih u radnoj okolini stroja, a ne od samog stroja.

3. Jesu li povećane vibracije bile prisutne prije zaustavljanja stroja? Ako su povećane vibracije prisutne od dana kad je stroj pušten u rad, tada imate problem koji potječe od pogrešne ugradnje, rezonancije u sustavu, neadekvatno balansiranog rotorskog sklopa ili potkapacitiranog/prekapacitiranog stroja?

4. Je li bilo izvanrednih događaja poput naglog prestanka napajanja pogonskog stroja ili pojave pumpanja? Često izvanredni neplanirani događaji poput pojave pumpanja u radu centrifugalnog kompresora dovode do oštećenja plinske brtvenice, ležajeva ili blagog savijanja vratila, što se kasnije manifestira pojavom povećanih vibracija.

5. Jesu li se naglo promijenili procesni uvjeti u sustavu, poput povećanja temperature radnog medija, nagle promjene brzine vrtnje stroja, naglog gubitka tlaka u sustavu ili još gore, nastanka hidrauličnog udara? Navedeni uzroci će svakako ostaviti traga na brzini vibriranja stroja u radu.

6. Je li došlo do promjene radnog medija? Promjena vrste radnog medija, tj. promjena fizikalnih i kemijskih svojstava radnog medija, ima utjecaja na dinamičke karakteristike stroja što za posljedicu ima povećanje vibracija.

7. Jeste li sigurni da su vrijednosti izmjerenih vibracija izvan dozvoljenog područja? Temeljem kojih i kakvih podataka ste došli do ovog zaključka? Npr. prilikom prvog pokretanja u rad novog stroja dobra praksa je izmjeriti vibracije i pohraniti podatke koji će kasnije poslužiti kao temeljne vrijednosti za usporedbu izmjerenih vrijednosti tijekom vremena. Također treba znati koje su dozvoljene ovisno o vrsti stroja. Standard ISO 10816-3 definira dozvoljenu brzinu vibracija ovisno o vrsti stroja i daje smjernice za usporedbu, što se vidi na slici 1.

Slika 1. Brzina vibracija ovisno o vrsti stroja i dozvoljene vrijednosti

Zelena polja područja označenog slovom A predstavljaju vrijednosti vibracija za nove strojeve pokrenute u rad i/ili strojeve nakon generalnog tvorničkog servisa. Žuta polja označena slovom B označavaju vrijednosti vibracija za strojeve koji su u konstantnom radu bez ograničenja. Narančasto obojena polja označena slovom C predstavljaju vrijednosti vibracija kod strojeva koji zbog nekog kvara više nisu prikladni da rade kontinuirano već mogu raditi isključivo kraće vrijeme, pri čemu treba napraviti korektivno održavanje čim se za to ukaže prilika. Crvena polja označena slovom D predstavljaju opasne vrijednosti vibracija gdje je velika vjerojatnost havarije stroja pa se takav stroj treba obustaviti jer nije za daljnji rad.

Prilikom definiranja dozvoljenih graničnih vrijednosti vibracija za vaše strojeve, preporučuje se ne uzeti vrijednosti koje su unutar manjih graničnih vrijednosti u odnosu na vrijednosti definirane standardom ISO 10816-3.

8. Je li sustav mjerenja vibracija kalibriran i daje li točne vrijednosti prilikom mjerenja? Ako je kojim slučajem jedna od sondi za mjerenje brzine vibracija oštećena ili je njen kabel u kvaru, izmjerene vrijednosti će biti pogrešne i nećemo imati konkretne podatke za analizu. Zato je potrebno redovito umjeravati i provjeravati sustav i komponente za mjerenje vibracija.

9. Je li rotacijski stroj nedavno bio centriran? Provjerite kakve vrijednosti horizontalnih i vertikalnih odstupanja su zabilježene u protokolu centriranja ili još bolje, demontirajte spojku pa provjerite centriranost. Nepravilno centriranje vratila pogonskog i pogonjenog stroja će pogađate već, uzrokovati povećane vibracije.

10. Jesu li nedavno napravljene rekonstrukcije sustava u vidu modifikacije pripadajućih cjevovoda, nosača, dodavanja nove opreme poput posuda, armature i sl.? U slučaju promjene cjevovoda ili dodavanja/ uklanjanja opreme potrebno je u suradnji sa projektantom napraviti novi hidraulički proračun i provjeriti zadovoljavaju li tehničke karakteristike stroja nastale promjene u sustavu.

11. Je li prisutna rezonancija? Ako sonda za mjerenje vibracija nije ispravno postavljena, može se dogoditi da pokupi signal koji ne potječe od samog stroja već je posljedica prisustva rezonantnog signala u okolini.

12. Je li došlo do povećanja vibracija na pomoćnim strojevima poput reduktora? Povećanjem opterećenja na zubima zupčanika u reduktoru doći će do promjena u vibracijama. Ako je u strojnom sustavu prisutan reduktor, treba pregledati zupčanike u potrazi za oštećenjima. Oštećenja zuba ukazuju na potencijalni problem torzijskih vibracija.

13. Je su li izvedene promjene u sustavu podmazivanja? Bilo je slučajeva kada je kompresor imao povećane vibracije jer je došlo do naglog gubitka ulja za podmazivanje zato što postojeća količina nije bila dovoljan za pokriti potrebe ugrađenih dodatnih cijevi prilikom rekonstrukcije sustava podmazivanja.

14. Imate li izvještaje o prethodnim servisima stroja i mjerne protokole? Jeste li uspoređivali zabilježene izmjere? Jesu li prisutna značajna odstupanja? Provjera podataka zabilježenih tijekom servisa će poslužiti za kontrolu stanja dijelova stroja te kao dokaz o (ne)adekvatno izvršenom servisu temeljem kojeg pokrećete eventualnu reklamaciju na radove.

15. Imate li izvještaje o prethodnim mjerenjima vibracija? Jeste li uspoređivali vrijednosti? Jesu li prisutna značajna odstupanja? Praćenje trenda prilikom mjerenja vibracija ukazuje na pogoršanje stanja dijelova, npr. kugličnih ležajeva. Iz tog razloga, potrebno je čuvati sve izvještaje i uspoređivati mjerenja.

16. Kakve su frekvencija izmjerenih vibracija? Npr. necentriranost stroja će se manifestirati u vidu brojčane vrijednosti umnoška broja okretaja, oštećeni zubi će se pokazati u vidu brojčane vrijednosti umnoška broja zubi i broja okretaja, necentriranost i debalans su povezani sa naglim promjenama frekvencije prilikom pokretanja ili zaustavljanja stroja tako da obavezno provjerite i frekvencije.

17. Poznajete li strojeve unutar proizvodnog procesa? Dnevni obilasci strojeva i opreme, vizualno praćenje te slušanje zvuka stroja u radu otkrivaju odstupanja od radnih parametara. Zvuk drobljenja i neuobičajeni šumovi su jasan znak da sa strojem nešto nije u radu a na vama je da otkrijete što se tu događa i zašto.

18. Jeste li angažirali specijalista da izvrši mjerenje vibracija i analizira dobivene rezultate? Mjerenje vibracija i tumačenje rezultata je kompleksan i vremenski zahtjevan zadatak pa se preporučuje angažirati stručnog tehničara ili specijalista koji će obaviti posao i dostaviti izvještaj s predloženim korektivnim mjerama. Često se ovakve stavke smatraju nepotrebnim troškom, međutim angažman stručnjaka će se kasnije isplatiti kroz uštedu na vremenu, obavljenom poslu i sprječavanju zastoja stroja (time i gubitka proizvodnje) zbog kvarova otklonjenih na vrijeme.

Na koji način mjerite i analizirate vibracije? Na koje probleme ste naišli prilikom tumačenja rezultata? Podijelite iskustva u komentarima!

Utjecaj spojke na centriranost pumpnog agregata

Centriranje rotacijskih strojeva je obavezan dio posla nakon povratka stroja na radnu poziciju. Kod mnogih mehaničarskih radiona u brojnim kompanija se nažalost još uvijek izvodi na principu pokušaja i pogreške. Necentriranost ima popratne efekte poput povećanih vibracija kad strojevi koji rade pri visokim brzinama vrtnje i tijekom vremena dovodi do oštećenja strojnih dijelova. Svi sudionici uključeni  u rad i održavanje rotacijskih strojeva (proizvođači, izvoditelji radova, operateri i djelatnici održavanja) moraju biti svjesni kritične važnosti centriranja u osiguravanju uspješnog pokretanja u rad, kontinuirang rada i dugoročne pouzdanosti strojeva. Kod visokih brzina vrtnje dozvoljene vrijednosti odstupanja centriranosti se smanjuju kako se povećava brzina vrtnje. Periodične provjere centriranost strojeva su obavezna aktivnost preventivnog održavanja.

Danas ćemo vidjeti na koje načine spojka utječe na centriranost pumpnog agregata i što činiti da se prilikom montaže izbjegnu najčešće pogreške.

Spojka spaja vratilo pogonskog i pogonjenog stroja omogućivši prijenos snage. Konstrukcija i tip spojke ovise o snazi pogonskog stroja, radnom opterećenju, promjerima vratila oba stroja te faktoru sigurnosti. Za spajanje rotacijskih strojeva se najčešće koriste su krute ili fleksibilne spojke poput ovih prikazanih na slici 1.

Slika 1.: Kruta spojka (lijevo) i fleksibilna spojka (desno) (izvor)

Krute spojke se koriste kada pogonski stroj stvara veliki okretni moment i kada nema pomaka vratila u aksijalnom smjeru. Krute spojke se često ugrađuju na turbogeneratore i procesne strojeve koji moraju tempirati rad kako bi proizvod bio izrađen prema određenom standardu. Krute spojke su jefitnije od fleksibilnih i zauzimaju manje mjesta. U teoriji moraju biti savršeno precizno centrirane uz 0 mm necentriranosti. U praksi se ipak dogode pomaci. Svako dinamičko opterećenje stroja, promjene zbog termičke dilatacije ili istezanja cijevi mora biti kompenzirano i kontrolirano ili će doći do oštećenja stroja. Ako odrivni ležaj na strani prema elektromotoru aksijalno podupire osovinu, potrebno je koristiti krutu spojku.

Fleksibilne spojke imaju prednost pred krutim spojkama jer dozvoljavaju male pomake te kompenziraju vrlo malu necenriranost, ovisno o konstrukciji spojke i dozvoljenim odstupanjima koje daje proizvođač. Fleksibilne spojke su konstruirane tako da bez oštećenja podnesu određenu necentriranost vratila.  Neki proizvođači spojke idu tako daleko ih da prodaju tvrdeći kako spojke mogu u potpunosti podnijeti svaku necentriranost. Ovakve izjave često zavaravaju jer se stječe dojam da ako spojka podnosi necentriranost isto tako će biti i sa strojevima koje spaja, te da će moći raditi u takvom stanju bez posljedica. Glavčine spojke na vratilu elektromotora i na vratilu pumpe moraju biti savršeno poravnate prije montaže umetka ili međukomada.

Razmak između krajeva vratila pumpe i elektromotora se ponekad poveća da se omogući ugradnja međukomada drugih dimenzija između pogonske i pogonjene polovice spojke. Korištenje međukomada također uklanja potrebu za otvaranjem kućišta pumpe ili elektromotora kako bi se izvršio pregled ugrađenih ležajeva ili brtvenica kod horizontalnih centrifugalnih višestupanjskih pumpi s rotorima između ležajeva. Međutim, uvijek kada strojevi rade sa znatnom necentriranosti dolazi do oštećenja ležajeva i brtvenica. Preporuka je da treba laserski centrirati prema tolerancijama i standardu za vratila, ne prema dozvoljenim odstupanjima za spojke.

Iako fleksibilne spojke mogu kompenzirati male pomake prilikom necentriranosti vratila pumpe i elektromotora tijekom normalnog rada, one ne mogu ispraviti kontinuirani nedostatak pravilne centriranosti. Uz štetan efekt koji nepravilno centriranje ima na spojku, može se dogoditi i prijenos aksijalnog opterećenja i momenata savijanja na vratilo i na ležajeve pumpe, što dovodi do povećanja vibracija.

Najčešći tipovi fleksibilnih spojki su:

Elastične spojke koje imaju elastični umetak ili fleksibilni element što omogućava kretanje dijelova spojke i smanjuje trenje te lagano kompenzira necentriranost do 0.0254 mm pomaka između simetrala pogonskog i pogonjenog stroja uz kutni pomak do 0.2°.  Ako se desi veći pomak, nastale sile će djelovati na ležajeve, brtve, zupčanike i vratila. Većina fleksibilnih spojki će preuzeti na sebe manje pomake necentriranosti. Također, spojka treba omogućiti prijenos okretnog momenta pri svim uvjetima kutnog i paralelnog pomaka.

Drugi tip fleksibilnih spojki su spojke s metalnim umetcima tkz. lamelama i gumenih navlake na vicjima koji ih drže zajedno. Fleksibilnost lamela kompenzira pomak necentričnosti od 0.0254 mm.

Ostali tipovi fleksibilnih spojki su:

  • zupčaste spojke, imaju glavčinu sa vanjskih zubima koji ulaze u zahvat sa odgovarajćim unutarnjim zubima okvira (spojka sa zubima na obje glavčine je flex-flex tipa). Ako su zupčanici samo na jednoj glavčini, dok je na suprotnoj glavčini prirubnica, spojka je fleksibilno-krutog tipa.
  • spojke s dijafragmom koje imaju jednu ili više membrana, vijcima pričvršćene blizu vanjskog dijela glavčine na pogonskom stroju ili unutarnjeg dijela glavčine na pogonjenom stroju.
  • klizne spojke imaju 2 metalne glavčine sa prirubnicama u obliku čeljusti koje su povezane sa središnjim umetkom često izrađenim od elastomera.
  • spojke s zaticima i čahurama imaju jednu glavčinu u obliku prirubnice s  zaticima i komplementarnu glavčinu sprovrtima u kojima su čahure. Obje glavčine se spajaju ubacivanjem zatika u čahure.

Proizvođači spojki pri isporuci spojke daju upute za ugradnju u kojima obično bude tablica s vrijednostima maksimalno dozvoljenih odstupanja prilikom centriranja, ovisno o veličini spojke. Navedene vrijednosti se ne odnose na odstupanje koje pritom imaju vratila pogonskog i pogonjenog stroja. Dozvoljena odstupanja obaju vratila se odnose na njihov položaj u odnosu na vertikalnu i horizontalnu ravninu kako bi se omogućio efikasan rad agregata, dok su dozvoljena odstupanja spojke indikacija koliki pomak može podnijeti spojka prije nego dođe do oštećenja.

Dozvoljena odstupanja spojke prilikom centriranja su prevelika u usporedbi s dozvoljenim odstupanjima obaju vratila i ovise o veličini spojke. Ako uzmemo za primjer proizvodno postrojenje s 30 rotacijskih strojeva koje pokreću elektromotori različiti snaga pri različitim brzinama vrtnje (rpm), imat ćemo 30 spojki različitih veličina i 30 različitih vrijednosti dozvoljenih odstupanja za spojke prilikom centriranja. Ako centriranje strojeva temeljimo na vrijednostima dozvoljenih odstupanja za centriranja vratila i na brzini vrtnje, tada ćemo imati puno manji broj dozvoljenih odstupanja.

U tablici su prikazani određeni primjeri dozvoljenih odstupanja preuzeti iz uputa proizvođača za ugradnju elastičnih spojki s umetkom na pumpne agregate, pri čemu elektromotor radi na frekvenciji 50Hz. Odstupanja ovise o promjeru spojke. Horizontalno odstupanje se promatra kao razmak na vanjskom obodu glavčina, što je veći promjer glavčine to će biti veći razmak na obodu.

Koje tipove spojke koristite? Kako centrirate strojeve? Koje probleme ste imali sa spojkama? Podijelite iskustva u komentarima! 

Utjecaj konstrukcije na rad reduktora

Uspješan rad i pouzdanost reduktora su podjednako odgovornost konstruktora, operatera i održavatelja. Situacije koje utječu na opterećenje zubi reduktora u zahvatu i raspodjelu opterećenja su pod utjecajem konstrukcije i točnosti postignute u proizvodnji te izvijanja temelja, ravnomjernog opterećenja na zubima zupčanika, točnosti centriranja u odnosu na pogonski i pogonjeni stroj te fleksibilne ugradnje. Važan faktor koji utječe na održavanje točnosti centriranja kod dvostupanjskih reduktora je razlika u brzini vrtnje prednjih i zadnjih ležaja u reduktoru.

Na rad ležaja utječu još komponente sile nastale djelovanjem opterećenja i okretnog momenta te komponenta djelovanja same težine zupčanika i kućišta. Kod određenih tipova reduktora, kada se statičko opterećenje koje djeluje na prednje i zadnje ležajeve razlikuje po intenzitetu (za razliku od ležaja na koje djeluje opterećenje jednakog intenziteta) rezultirajuće sile neće biti istog smjera djelovanja. To će uzrokovati rad prednjeg i zadnjeg ležaja u različitim položajima unutar njihovog polja zračnosti.

Ležajevi reduktora su smješteni u kućištu iznad spremnika ulja za podmazivanje pa se iz tog razloga njihovi temelji zagrijavaju kada su u radu te uzrokuju nenamjerno pomicanje ležajeva. S druge strane, malo topline nastaje i tijekom rada pogonskog i pogonjenog stroja koji imaju veću temperaturu nego što je temperatura okoline. U tom slučaju, neizbježno je da njihov rad također utječe na rad ležajeva reduktora kada pumpni agregat prelazi iz hladnog stanja mirovanja na radnu temperaturu. Kada se postignu radni uvjeti, ležajno kućište reduktora će se podići otprilike od 0,3 mm do 0,7 mm iznad ležajnog kućišta pogonjenog stroja.

Postizanje kompenzacije za termičko i elastično izvijanje zubi na zupčanicima je ključni faktor pouzdanog rada time što omogućava postizanje prihvatljive raspodjele opterećenja među zupčanicima u zahvatu.

Zubi zupčanika kod višestupanjskih reduktora su konstruirani tako da rade pod utjecajem sila te imaju bočne kritične brzine koje su daleko iznad radnih brzina. Radit će bez vibracija ako su balansirani prema odgovarajućoj proceduri. Ako su parna ili plinska turbina glavni pogonski strojevi, balansiranje je osobito važno za zupčanik prvog stupnja redukcije jer on ima istu brzinu vrtnje kao i turbina. Zato mora imati jednaki stupanj dinamičke ravnoteže kao i turbina.

Generalno, reduktori imaju zube izrađene metodom tokarenja. U ovom procesu, alat za rezanje je tokarski nož, koji ima više rotirajućih sjekača na jednoj ili više vodilica, sa zubima koji su izvedeni tako da formiraju izabrano osnovno zupčasto kolo. Tijekom procesa izrade, djelovanje, rotirajućih sjekača izrezuju se zubi te nastaje pravi spiralni oblik bočne strane zuba i praznina među zubima. Noževi ujedno određuju dimenzije zubi u odnosu na njihov oblik.

Ostali parametri koji određuju geometriju zuba, broj i kut zavoja određeni su izborom promjenjivog omjera vrzine vrtnje zupčanika tokarilice bez da se mora mijenjati vrsta alata za urezivanje. Namještanjem kuta zavoja kojeg određuje profil zuba u ravnini rotacije moguće je koristiti izabrani nož jer se tako dobije profil zuba u ravnini zahvata zuba te određeni broj zuba. Zato se koristi standardizirani i ograničeni broj tokarskih alata za izradu zupčanika.

Drugi proces obrade koji se koristi za izradu velikih zupčanika je oblikovanje urezivanjem. U ovom procesu alat za oblikovanje je ili u obliku zupčaste letve ili nalik na mali zupčanik sa sjekačima koji zarezuju materijal u trenutku vrtnje kako bi oblikovali zahtijevani oblik zuba.

Procesi strojne obrade nakon rezanja se primjenjuju za poboljšavanje točnosti i ujednačenosti površine zubi zupčanika. Procesom aksijalnog struganja, zupčanik s višestrukim redom zubi za obradu površine gloda površinu zubi zupčanika s kojim je u zahvatu. Površina alata ima pravokutna udubljenja i kut zavoja koji se razlikuje za nekoliko stupnjeva od kuta zavoja zuba na zupčaniku koji se obrađuje. Ova razlika kuteva omogućuje kretanje duž oboda za precizno rezanje i glodanje.

S obzirom na veliku brzinu vrtnje zupčanika tijekom obrade te sporije glodanje površine, omogućeno je precizno rezanje bočne površine zuba. Rezultat ovog procesa je finija površina zuba i  precizniji oblik spiralnog zavoja u usporedbi što bi se postiglo tokarenjem. Proces glodanja također omogućava korekciju nedostataka kuta zavoja zupčanika tako što se selektivno izabire površina za obradu glodanjem koja je u kontaktu zupčanika u zahvatu.

Ubrušavanje je proces kada se za obradu koriste noževe koji imaju vrhove ojačane željeznim karbidom za uklanjanje neravnina na učvršćenim elementima reduktora. Međutim, zahtjev za velikom točnosti konstrukcije reduktora često onemogućava primjenu ubrušavanja za završnu obradu zupčanika.

Rotirajuće honovanje zupčanika reduktora je metoda za poboljšanje procesa završne obrade zupčanika. Honovanje je proces sličan glodanju duž aksijalne osi, međutim koristi abrazivni alat bez ozubljenja. Potreban je poseban oblik alata za honovanje kako bi se održala točnost profila zupčanika. Tijekom procesa brušenja, bruse se bočne strane zupčanika pri čemu se istovremeno ostvaruje potreban oblik zuba i kut zavoja. Proces brušenja vrlo često omogućava modifikacije profila zuba, kuta zavoja i krajnjih udubljenja. Promjene profila zuba omogućavaju postizanje optimalne raspodjele opterećenja duž zuba te smanjenje buke kada su zupčanici u zahvatu.

Provjera nalijeganja zubi zupčanika te jednolika raspodjela opterećenja duž širine lica zuba je bitna za pouzdan rad i smanjenje rizika da dođe do ubrzanog trošenja zuba. Provjera nalijeganja zuba pomoću kočnice se koristi kao pokazatelj međusobnog kontakta zubi. Provjera se može izvesti i pomoću nanesenih slojeva bakra ili nanošenjem plave boje. Otisak koji ostavlja plava boja ili otisak koji ostaje na sloju bakra služi kao  pokazatelj nalijeganja. Korištenjem naprednih metoda mjerenja vibracija i modulirane frekvencije može se motriti stanje zuba pri svi načinima rada i različitim uvjetima okoline te bilježiti utjecaj svih vanjskih i unutarnjih čimbenika koji utječu na trajnost zuba tijekom rada reduktora.

Kod ranih konstrukcija reduktora nepravilnosti zupčanika nastale tijekom proizvodnje su ponekad bile uzrok vibracija, međutim, preciznost kojom se izrađuju današnji zupčanici je uklonila ovaj izvor vibracija. Kod reduktora koji su u sustavu parnih ili plinskih turbina razlikujemo 3 vrste torzijskih vibracija. Kod prve vrste torzijskih vibracija, kutne vibracije su najveće, dok je na reduktoru najveći moment torzije. To se većinom događa tijekom rada u sustavima sa dugim spojkama te može biti jako opasno kada se javi u sustavima sa kraćim spojkama.

Prva vrsta torzijskih vibracija se mora pažljivo procijeniti kako bi se osiguralo da torzijski moment koji se dodaje momentu što se prenosi pri stabilnim uvjetima rada ne ugrožava rad reduktora. Inercija i faktori elastičnosti turbine i reduktora nemaju značajan učinak na prvu kritičnu brzinu.

Druga vrsta torzijskih vibracija je kada dođe do vibriranja 2 susjedna pogonska stroja npr. turbine, u suprotnim smjerovima i to se može dogoditi tijekom rada. U ovom slučaju, torzijski moment se mora procijeniti na isti način kao i kod prve kritične brzine. Primjenjujući sustav čvrstog pogona onemogućava se pobuđivanje druge vrste vibracija. Kod ovakvog pogona, 2 turbine su usklađene u radu podešavanjem dimenzija vratila na takav način da imaju istu radnu frekvenciju kao i reduktor. Kao rezultat, sva gibanja vratila obje turbine i pogonjenog stroja neće uzrokovati pobuđivanje druge vrste vibracija s obzirom na čvrstoću konstrukcije pogonskog stroja.

Treća vrsta vibracija je ona kod koje je reduktor podložan savijanju jer nema čvrstu konstrukciju. Obično se događa daleko izvan normalnog načina rada, međutim može utjecati na rad.

Npr. na brodovima glavni sustav propulzije koji koristi dizel motor kao primarni pogon zahtjeva opširne analize torzijskih vibracija kako bi se osigurao zadovoljavajući rad. Dizel motori imaju različite razine pobuđivanja. Četverotaktni motori imaju uzbude reda ½, 1, 1 ½, 2, 2 1/2, itd. Dvotaktni motori imaju uzbude reda 1, 2, 3, itd. Obično se analiziraju uzbude do 12. reda. Većina sustava dizelske propulzije na teretnim brodovima zahtijeva fleksibilnu torzijsku spojku za ublažavanje krutosti osovinskog voda koje ima i karakteristike prigušivanja kako bi se smanjile torzijske vibracije u reduktorima.

dvostupanjski reduktor

Slika 1.: Primjer dvostupanjskog reduktora (izvor)

Funkcija kućišta reduktora je osigurati odgovarajuću potporu ležajevima te spremnik ulja za prisilno podmazivanje zupčanika. Sva opterećenja ležajeva se nalaze u ravninama okomitima na os vratila. U mnogim slučajevima, posebno kod spoja sa dvostupanjskim reduktorima, kućište ležaja mora podupirati ležajeve pri različitim nagibima. Važno je da potporni sklop ima odgovarajuću čvrstoću konstrukcije kako bi se spriječila pojava bilo koje vrste mjerljivog savijanja zbog djelovanja različitog opterećenja.

Zbog različitog smjera vrtnje raznih vratila te zbog položaja opterećenja na zupčanika reduktora, može se dogoditi reakcija sile na ležajeve pod određenim kutem u odnosu na os vrtnje, pa je važno da se ovaj događaj uzme u obzir pri konstrukciji poklopca kućišta. Treba imati na umu da je za dobar rad reduktora i minimalno trošenje zupčanika potrebno da vratila rade kontinuirano i paralelno jedan u odnosu na drugi. Konstrukcija kućišta reduktora je jedan od načina da se osigura centriranje osovina pogonskog i pogonjenog stroja u odnosu na reduktor.

Konstrukcija i krutost kućišta reduktora se moraju proučiti i usporediti sa strukturom i krutosti temelja na kojima leži reduktor i sklopa kod kojeg je kućište reduktora vijcima pričvršćeno za temeljnu ploču u proizvodnom postrojenju. Kućište je kruto pričvršćeno na temelje kako bi formiralo strukturu koja će spriječiti savijanje osovinica zupčanika.

Osim kod malih pomoćnih reduktora, kućišta imaju odvojene poklopce za inspekciju kako bi se provjerilo stanje zupčanika te da se mogu kontrolirati i zamijeniti ležaji, fleksibilne spojke i ulje za podmazivanje bez potrebe za demontažom većih dijelova kućišta reduktora. Spojke koje povezuju vratila turbina sa reduktorima su također važne u određivanju bočne kritične brzine u sklopu turbina-reduktor i trebaju se uzeti u obzir pri procjeni. Kombinacija elektromotora, spojke, reduktora i pumpe čini sklop koji će torzijski vibrirati što je reakcija na impulse nastale zbog vrtnje rotora pumpe.

Problemi u radu reduktora uzrokovani su i zbog pretjerane krutosti spojke te neodgovarajućeg centriranja, i zato su potrebna stalna unaprijeđenja konstrukcije i razmjena iskustava između  operatera, održavatelja i konstruktora kako bi se omogućila zadovoljavajuća ugradnja. Prilikom ugradnje treba ispoštovati potrebne procedure i preporuke proizvođača opreme te primjeniti dobru praksu tijekom centriranja.

Koje tipove reduktora održavate? Koje probleme ste imali? Što mislite o utjecaju konstrukcije na rad reduktora? Podijelite vaša iskustva u komentarima!

Recenzija priručnik za Upravljanje održavanjem i inženjering

Priručnik za Upravljanje održavanjem i inženjering (Handbook of Maintenance Management and Engineering) napisala je skupina autora (Jezdimir Knežević ,Mohamed Ben-Daya, Salih O. Duffuaa, Abdul Raouf, Daoud Ait-Kadi), svi redom sveučilišni profesori s različitih fakulteta.

Službeni opis priručnika s web stranice nakladnika kaže sljedeće:

Priručnik Upravljanje održavanjem i inženjering pokriva širok izbor tema iz održavanja na teorijskim temeljima, znanstvenim istraživanjima te najavljuje nadolazeće trendove u znanstvenom području strojnog održavanja.

Jedno od glavnih poslovnih područja svake proizvodne kompanije bez obzira na branšu, veličinu i broj djelatnik je interdisciplinarnost strojnog održavanja; priručnik daje iscrpne analize, kvantitativne i kvantitativne preporuke za procjenu sustava održavanja te  fundamentalna i primjenjiva istraživanja iz šireg spektra održavanja, predlaže rješenja određenih situacija i upućuje na vještine upravljanja potrebne za evaluaciju i kontinuirano unaprjeđenje sustava održavanja.

Da bi bile konkurentne na domaćim i inozemnim tržištima, proizvodne kompanije moraju funkcionirati uz visoku razinu pouzdanosti strojeva i opreme kakva je bila nezamisliva i teško dostižna proteklih desetljeća. Zahtjevi za kvalitetom proizvoda, sve kraćim vremenom zastoja proizvodnog procesa i povećanom operativnom efikasnošću unutar brzo promjenjive okoline zahtijevaju visoku razinu održavanja.

U nekim slučajevima pred održavanje se postavlja zahtjev povećanja proizvodne učinkovitosti i profita te zadovoljstva krajnjih kupaca, uz istovremeno snižavanje kapitalnih i operativnih troškova.

prirucnik za inzenjering

S obzirom na navedene izazove, strategija održavanja mora biti skladu sa zahtjevima proizvodnih procesa i postojećom dobrom praksom.

Teme su izabrane tako da pokrivaju širok raspon problematike iz upravljanja održavanjem i inženjeringa kako bi pomogle svim zainteresiranim za održavanje bilo da su industrijski praktičari ili akademski istraživači.

Održavanje je u svim industrijama postalo multidisciplinarno područje i susrećemo se sa situacijama gdje je održavanje u potpunosti odgovornost djelatnika koji ne moraju nužno imati inženjersko obrazovanje.

Priručnik zato ima cilj pomoći djelatnicima na različitim razinama da bolje razumiju i savladaju izazove strojnog održavanja, bilo da se radi o voditeljima pogona, inženjerima, djelatnicima proizvodnje, iskusnim održavateljima ili početnicima u održavanju.

Priručnik je istovremeno kvalitetan resurs za tehničare, inženjere i sve djelatnike koji su na bilo koji način uključeni u održavanje strojeva i opreme.”

Što se tiče izvedbe, priručnik je podijeljen u 6 područja i sadrži 26 poglavlja na 700-tinjak koja pokrivaju širok raspon tema iz upravljanja održavanjem i inženjeringa.

Priručnik daje enciklopedijski pregled područja poput održavanja usmjerenog na pouzdanost, integrirano e-održavanje i inteligentni sustavi održavanja, utjecaj održavanja na okoliš, ljudske pogreške i siguran rad postrojenja, analize kvarova i stabla odlučivanja, razvoj računalnog sustava za upravljanje održavanjem, matematičko modeliranje na razini komponente, stroja i strojnog sustava…

Za razliku od priručnika koje sam do sada proučavala i koristila te napravila recenzije u člancima Održavanje i popravak strojnih elemenata, Održavanje usmjereno na pouzdanost, Potpuni vodič za preventivno i prediktivno održavanje, Inženjerski vodič za rotacionu opremu, ovaj priručnik je totalno drugačiji prvenstveno što se tiče pristupa i obradi teme te razini kompleksnosti.

Vidljiva je velika razlika u načinu pisanja koji je više orijentiran teorijski i stavu prema strojarskom održavanju iz pozicije profesora sa sveučilišta u usporedbi s priručnicima koje su napisali profesionalci s višegodišnjim praktičnim iskustvom u svakodnevnom radu na strojevima.

Opisani i razrađeni praktični primjeri su starijeg datuma te se većinom odnose na avionsku industriju, vojnu industriju, rudarstvo, automobilsku industriju i željeznice, vjerojatno zato što su autori svoj akademski rad usmjerili na ta područja.

Poglavlja usmjerena na upravljanje održavanjem predstavljaju strukturu organizacije kakva bi trebala biti da se izvuče maksimalna učinkovitost iz radnog procesa, djelatnika i resursa.

Priručnik je pretežito namijenjen održavanju u velikim kompanijama koje imaju više sličnih ili različitih procesnih postrojenja unutar iste grupacije.

Iznesene principe i preporuke morate staviti u perspektivu održavanja kojim se bavite, npr. ako radite održavanje farmaceutskog proizvodnog pogona prilagodit ćete principe takvoj vrsti postrojenja, za razliku od kolega koji rade u petrokemiji i koji će napraviti drugačiju prilagodbu radi specifičnosti strojeva o kojima brinu.

Poglavlja usmjerena na inženjering bave se unaprijeđenjem postojećih održavateljskih sustava i razradom optimizacije procesa.

Izneseni su  brojni matematički modeli za izvođenje različitih vrsta analiza kojima ćete detaljno modelirati prošlo i buduće stanje strojeva i strojnih sustava. Analize se sastoje od najjednostavnijih koncepata do složenih matematičkih formula, što je razumljivo kada uzmemo u obzir da različite industrije imaju različiti stupanj razvoja u održavanju.

Poglavlja su isključivo računski orijentirana ako trebate napraviti detaljnije analize ili kao pomoć pri izračunavanju parametara koji su od koristi za provjeru pouzdanosti rada vaših strojeva.

Naći ćete kvalitetne primjere na koji način korak po korak napraviti analize pouzdanosti pojedinačnih strojeva i čitavih skupina na postrojenju, analize pojedinačnih komponenti i svih komponenti u promatranom stroju, razvoj stupnja trošenja te razvoj kvara tijekom vremena.

Priručnik će dobro poslužiti ako vam je poslovni plan napraviti optimizaciju rada postojećih strojeva temeljem matematičkih modela i analiza jer ćete dobiti konkretne brojke o tome kolika je projekcija učestalosti kvarova za sustave sa različitim brojem komponenti.

Prema mojem iskustvu korisna poglavlja su bila: sustav upravljanja održavanjem, izrada i poboljšanje svakodnevnih radnh naloga, kvaliteta izvršenog posla, implementacija sustava održavanja usmjerenom na pouzdanost, određivanje prioriteta u popravcima te ciljevi koje mora ispuniti svaki popravak bez obizra na kompleksnost stroja.

Korisno za praktičnu primjenu su još načini kako izračunati pokazatelje uspješnosti održavanja, modelirati ponašanje stroja u budućnosti temeljem poznatog broja kvarova i primjenjenih održavateljskih tehnika te procjenu učinkovitosti održavanja po pitanjima:

Koji održavateljski poslovi moraju biti odrađeni?

Kada održavateljski poslovi moraju biti odrađeni?

Koliko je kompleksno izvršiti određeni održavateljski posao?

Je li sigurno izvršiti određeni održavateljski posao?

Koliko je djelatnika potrebno za izvršiti određeni održavateljski posao?

Koliki je trošak popravka?

Koliko dugo će strojni sustav biti u kvaru?

Koji alati i uređaji su porebni za popravak?     i

Koji stručni djelatnici trebaju za popraviti stroj?

Priručnik također upućuje na korelacije između performansi opreme i broja intervencija koje se rade u analizama pouzdanosti radi određivanja koliko je vremena proteklo od pojave prvog kvara ili koliko je prošlo vremena između 2 kvara i sve to u odnosu na količinu proizvoda određenog postrojenja te  utjecaj održavanja na sigurnost.

Učinkovitost se promatra kroz održavanje po radnim satima pojedinih stručnih djelatnika ovisno o radim satima sustava, ciklusima rada sustava održavanja po mjesecima i po održavateljskom poslu uz praćenje troškova.

Zanimljivo je i poglavlje o načinima kako izračunati i izraditi projekciju održivosti strojnog sustava kada je najveći utjecaj na dugovječnost u fazi konstruiranja stroja pa možete vidjeti koje su razlike u životnom vijeku u odnosu na tehničke karakteristike za različite varijacije konstrukcije.

Vrlo rijetko se u strojarskoj literaturi razmatra utjecaj garancije na održavanje jer budimo realni, koliko puta i kada smo i sami u praksi analizirali utjecaj garancije?

Često je odgovor – samoinicijativno nismo nikada, osim u slučaju kada stroj doživi žešću havariju tijekom trajanja garancije pa slijedi popravak i dugotrajno druženje sa ovlaštenim servisom ili predstavnikom proizvođača 😉

Priručnik nam također može pomoći pri uvođenju RCM-a jer ukazuje na dokument SAE JA-1011 američkog Society of Automotive Engineers koji daje određeni stupanj standardizacije za procese održavanje usmjerenog prema pouzdanosti te defnira proces kroz 7 pitanja temeljem kojih kasnije određujete pristup održavanju.

Pitanja glase:

  1. Koja je funkcija i povezani standardi performansi opreme i strojeva u sadašnjem radnom okruženju?
  2. Na koje načine stroj ne može ispuniti svoje funkcije?
  3. Što uzrokuje svaki kvar ili nemogućnost ispunjavanja funkcije za koju je stroj namijenjen?
  4. Što se dogodi sa strojem i sustavom kada se desi svaki kvar?
  5. Na koje načine je bitan svaki kvar (utjecaj na zdravlje, sigurnost, okoliš)?
  6. Što se može učiniti da se predvidi ili spriječi svaki kvar?
  7. Što treba učiniti ako nema primjenjivi proaktivnih rješenja za ublažavanje kvara ili potpuno spriječavanje?

Navedena pitanja vam mogu puno pomoći ako ste i sami u procesu uvođenja održavanja usmjerenog prema pouzdanosti ili vas podsjetiti da ih iskoristite za analizu i poboljšanje sustava održavanja koji već imate.

Dodatno, ukupnu produktivnost održavanje dijela proizvodnog postrojenja ili čitavih pogona možete procijeniti analizom koja obuhvaća sljedeće:

  1. Izbor sustava i prikupljanje potrebnih podataka
  2. Definiranje granica sustava
  3. Opis sustava i izradu funkcionalnih blok dijagrama;
  4. Provjeru funkcionalnosti sustavaa i učestalost kvarova
  5. Načine nastanka kvarova i analiza utjecaja (Failure mode and effective analysis – FMEA);
  6. Izradu logičkog stabla odlučivanja te
  7. Izbor zadataka koji će se implamentirati radi poboljšanja postojećeg stanja.

Priznajem da imam podvojeno mišjenje o ovom priručniku zato što je s jedne strane previše teorijski a mi smo ipak praktičari, dok s druge strane ima dosta razrađene matematičke modele koje možete preuzeti za obradu vaših podataka i direktno unositi formule u excel ili u kojem god programu radite analize pa štedite vrijeme i energiju.

Za kraj donosim popis prednosti i nedostataka pa vi sami prosudite kolika bi vam bila korist od ovakve vrste priručnika.

Prednosti Priručnika za Upravljanje održavanjem i inženjering:

Sviđa mi se što su navedene naučene lekcije iz područja upravljanja održavanjem kao smjernica inženjerima za buduće: konstruiranje, sklapanje sustava, projektiranje i instalaciju električnih kabela, elektronskih sklopova, ispitivanja opreme, brtvljenja i podmazivanja.

Objedinjene su brojne smjernice i korisna pitanja koja vas vode pri procjeni stanja vaših strojeva i opreme, tj. sve što sam navela u prethodnim paragrafima i još više.

Na jednom mjestu imate brojne matematičke modele koji idu korak po korak pod uvjetom da ste prethodno prikupili sve podatke.

Nedostaci priručnika: 

Autori za svako poglavlje daju reference na postojeću literaturu i (uglavnom vlastite) članke iz određenog područja, ali reference su stare 10 i više godina.

Stil pisanja je u potpunosti akademski te autori često citiraju svoje prethodno objavljene znanstvene radove. Za izradu analiza potreban je veliki broj uzoraka ili komada opreme pa je bolje koristiti matematičke modele za analizu stanja u velikim postrojenjima sa brojnim strojevima istog tipa npr. ako imate 50 pumpi, 30 parnih turbina male snage, 20 ventilatora i sl.

Potrebno je puno truda i vremena za empirijsko prikupljanje podataka i parametarski pristup modeliranju pod uvjetom da imate kvalitetne i istinite podatke koje ste sami provjerili.

Nema smjernica za provjeru kvalitete prikupljenih podataka, matematički modeli zahtijevaju napredno poznavanje matematike i statistike, pogotovo za tumačenja rezultata.

Definicije iz održavanja i podjele se ponavljaju iz poglavlja u poglavlje što pomalo postaje monotono, valjda su se autori vodili izrekom – ponavljanje je majka mudrosti.

Iako je priručnik između ostalog namijenjen i početnicima u održavanju, mislim da će početnicima biti teže razumljiv i morat će uložiti više truda i vremena u proučavanje (da ne spominjem pokušaj primjene u praksi) jer izneseni principi ipak zahtijeva određeno prethodno iskustvo za praćenje i razumijevanje sadržaja .

Koji stručni priručnik koristite u praksi? Zašto? Podijelite vaša iskustva u komentarima ili mi napišite recenziju i na taj način podijelite kvalitetnu literaturu s kolegama pa ću objaviti vašu recenziju na blogu!

Osnovne karakteristike ulja za podmazivanja plinske turbine

Održavanje plinske turbine podrazumijeva stalnu brigu o sustavu podmazivanja. Danas ćemo razmotriti opće smjernice za podmazivanje plinskih turbina i karakteristike maziva.

Sustav podmazivanja plinske turbine je konstruiran tako da omogući neometanu dobavu filtriranog maziva pri odgovarajućoj temperaturi i tlaku. U sustavu podmazivanja postoje i zaštitni uređaji kako bi zaštitili turbinu od niske razine ulja, niskog tlaka i previsoke temperature. Zaštitni uređaji aktiviraju alarme ili izbacuju turbinu iz rada ako se dogodi neki od navedenih slučajeva.

Količina ulja za podmazivanje u cirkulaciji unutar plinske turbine je puno manja u usporedbi s dizel motorom iste izlazne snage, pa je specifična potrošnja ulja značajno niža, npr. neke turbine imaju zabilježenu potrošnju 0.1 l/h. Manja količina dobave znači da je ulje podložno većem fizikalnom i kemijskom naprezanju nego kod dizel motora, dok smanjena potrošnja znači da se ulje rjeđe mijenja. Tako se snižavaju godišnji troškovi sustava podmazivanja.

Tijekom rada turbine ulje je izloženo određenom rasponu temperatura s obzirom na to da cirkulira čitao vrijeme. Prije pokretanja turbine u rad potrebno je cirkulirati ulje da postigne odgovarajuću viskoznost pri temperaturi 24 ̊C. Temperatura ulja za podmazivanje ležajeva mora biti minimalno 54 ̊C. U praksi navedeni uvjeti mogu varirati ovisno o uvjetima okoliša, temperaturi rashladnog sredstva, konstrukcijskim specifičnostima turbine i radnom opterećenju.

Sustav hlađenja maziva je konstruiran za održavati temperaturu na 54 ̊C ako je dostupna velika količina rashladnog sredstva. Međutim, kada u sustavu imamo izmjenjivače, temperatura će biti održana dulje vrijeme, ali će postepeno porasti na 71 ̊C. Preporučuje se da ulazna temperatura rashladne vode za ležajeve bude 32 ̊C. Kod nekih plinskih turbina ležajna kućišta su smještena u okolini gdje je prisutna povišena temperatura do 260 ̊C. Na ulaznim i izlaznim cijevima rashladne vode obično su postavljeni termometri kojima se prati temepratura.

Ležajno kućište ima labirintne brtve i protok zraka takav da je prostor kućišta pod atmosferskim tlakom. Vrlo mali dio ulja će se pomiješati s malom količinom zraka koji služi za brtvljenje i u vrtložnom strujanju isprati metalne površine ležaja. Temperatura ulja u spremniku će biti od 24 ̊C to 32 ̊C niža od radne temperature.

Osim podmazivanja ležaja i drugih ključnih dijelova plinske turbine, ulje ima funkciju intenzivnog odvođenja topline. Za razliku od ulja za dizel motore, ulje za podmazivanje turbine ne dolazi u kontakt sa procesom izgaranja i ne treba uklanjati produkte izgaranja ili neutralizirati kiseline nastale izgaranjem goriva koje sadrži sumpor.

Kod nekih tipova plinskih turbina, koncentracija snage i količine topline u kombinaciji sa relativno malom količinom ulja za podmazivanje u cirkulaciji rezultira vršnim temperaturama preko 200°C. Mineralna ulja nisu prikladna za ovaj tip plinskih turbina zato što bi ubrzo oksidirala na temperaturama većim od 200°C. Nastale bi naslage čađe, kiseline i koksa te bi se ubrzano bi povećala viskoznost ulja. Preferiraju se sintetička ulja zbog svoje sposobnosti da podnesu puno veće temperature u odnosu na mineralna ulja.

Sve metalne površine plinske turbine u dodiru s mazivom moraju biti zaštićene od korozije. Unutarnje stijenke spremnika ulja moraju biti premazane bojom otpornom na djelovanje kemikalija u ulju. Unutarnje površine sustava podmazivanja poput cijevi, ležajeva, hidrauličnih kontrolnih uređaja, ventila i ostale opreme su presvučene premazom otpornim na hrđanje i djelovanje uljnih para. Prije pokretanja turbine u rad i nakon servisa potrebno je isprati i očistiti sustav podmazivanja. Uljne pare moraju biti odzračene jer će uzrokovati pjenjenje ulja i spriječiti separaciju vode iz sustavu.

Dvije najčešće korištene vrste ulja dostupnih za podmazivanje plinskih turbina su standardno ulje i ulje obogaćeno inhibitorima korozije. Prema podacima nekih istraživanja, većina kompanija koja koristi plinske turbine upotrebljava premium ulja za inhibiciju korozije zbog veće zaštite ležajeva i  drugih dijelova. Razlog tome je dobra otpornost prema nastajanju koksa, dobre karakteristike ekspanzije volumena te kemijska kompatibilnost sa brtvama kao poželjne karakteristike sintetičkih ulja za podmazivanje mlazno pogonjenih plinskih turbina.

Koks čine naslage tvrdih, krutih čestica ugljika nastale zbog djelovanja visokih temperatura, što može dovesti do začepljenja uljnih kanala. Tendencija ulja da se razlaže i stvara koksne naslage se može pogoršati određenim načinima rada turbine, kao što je brza akceleracija i iznenadno zaustavljanje, zbog čega je ulje stalno podložno visokim temperaturama.

Zgušnjavanje ulja nastaje kada sintetički materijal brtvi reagira sa sintetičkim komponentama ulja pa dolazi do upijanja ulja. Djelomičo upijanje je poželjno radi osiguravanja brtvljenja i nepropusnosti, ali previše upijanja može dovesti do oštećenja materijala od kojih su brtve izrađene i pojave propuštanja. Dodatno, ulje i elastomeri koji dolaze u kontakt trebaju biti kompatibilni sa drugim kemijskim svojstvima kako bi se izbjeglo trošenje.

Sintetičko mazivo za plinske turbine je proizvod za inhibiciju korozije koje ima poželjna svojstva te dobru termičku, oksidacijsku i hidrolitičku stabilnost uz otpornost na koroziju. Također ima odgovarajuću viskoznost od 5 cSt pri 100°C.

Sintetičko ulje za podmazivanje se također koristi za brodske plinske turbine uz odličnu visokotemperaturnu i oksidacijsku stabilnosti te visoku sposobnost podnošenja opterećenja. Također ima svojstva koja spriječavaju nastajanje hrđe i trošenje brtvi. Turbina je zaštićena tijekom ekstremno hladnih vremenskih uvjeta prilikom pokretanja i tijekom duljeg rada pri visokim temperaturama, nastajanje naslaga ili taloga je spriječeno duljim intervalima ispiranja te redovitim dreniranjem.

Tijekom rada treba redovito provjeravati temperaturu i tlak ulja u sustavu (jesu li u skladu s dozvoljenim vrijednostima prema korisničkom priručniku i specifikacijama, ima li propuštanja) te pratiti čistoću ulja uzimanjem uzoraka i slanjem na analizu, pročišćavanjem i po potrebi dodavanjem aditiva. Propuštanje vode se također vidi u uzorku. Ispitivanja i laboratorijske analize provjeravaju krakteristike i stanje ulja prema standardima ASTM D445, ASTM D974, ASTM D2272, ASTM D6971, ASTM D 6304, ASTM D 3427, ASTM D4378 ASTM D5452 i ASTM D7214.

Koja svojstva maziva smatrate bitnima? Koje probleme ste imali u sustavu podmazivanja? Podijelite iskustva u komentarima!

 

Dobra praksa za popravak centrifugalne pumpe

Otklanjanje kvarova centrifugalnih pumpi je svakodnevan održavateljski posao. Svaki tehnički nepravilan popravak, svaki popravak odrađen u žurbi ili bez poštivanja pravila struke se pokaže s vremenom u vidu ponavljajućih kvarova i kratkog radnog vijeka pumpe. Za razliku od popravaka električnih strojeva gdje manjkavost popravka brzo izađe na vidjelo čim pokušate pokrenuti stroj u rad (pojave se iskre, ispadnu osigurači ili u najgorem slučaju dođe do požara), greške u mehaničkom popravku su na prvu manje očite.

Npr. zanemarite jednu dimenzionalnu provjeru potrošnih prstena, preskočite jedan korak prilikom centriranja, ignorirajte dozvoljena odstupanja za ležajeve ili nebalansirano vratilo i pumpa će nastaviti raditi, međutim pitanje je koliko dugo vremena. Nekada kontinuirani rad potraje godinu ili dvije prije novog kvara ili havarije u usporedbi s tehnički ispravnom pumpom koja bi radila 5 do 7 godina prije pojave kvara. Nakon godine dana kada se ponovi kvar zbog tehničke neispravnosti pumpe djelatnici postrojenja mogu pomisliti da je jednogodišnji rad pumpe očekivani radni vijek. Takav pristup dovodi do povećanih troškova, manje pouzdanosti u radu postrojenja te gubitku vremena i proizvoda zbog neplaniranog zastoja (uz gubljenje živaca i nepotreban stres svih sudionika).

Kada pumpa doživi veći kvar ili havariju, potreban je generalni servis. Sveobuhvatni servis zahtijeva stručnost, znanje, određeno vrijeme i fokusiranost na detalje. Tada treba napraviti sve tehnički korektne aktivnosti i dobru praksu kako bi se pumpa popravila i bila tehnički ispravna. Danas razmatramo preporuke dobre prakse za popravke centrifugalnih pumpi bez obzira na vrstu radnog medija koju prepumpavaju i tip postrojenja.

Prilikom montaže novih ležajeva potrebna su mjerenja. Ležaj je koncentričan kada se izvadi iz originalnog pakiranja i ima propisane unutarnje tolerancije koje omogućavaju neometano kretanje elemenata prilikom vrtnje vratila. Ako je vratilo predimenzionirano ili pomalo konično na mjestu ugradnje ležajeva (sjedištu) ili ako je ležajno kućište prošireno s unutarnje strane na mjestu ugradnje ležajeva, ležajevi neće zadržati oblik tijekom rada. Mogućnost ležaja da zadrži koncentričan oblik tijekom rada određuje između ostalog radni vijek.

Provjerite dimenzije ležajnog kućišta i sjedišta na vratilu kako bi osigurali pravilnu montažu tijekom servisa. Dozvoljena odstupanja su obično navedena u korisničkom priručniku pumpe ili u priručniku proizvođača ležaja. Po potrebi možete ih oboje konzultirati radi potvrde odgovarajućih dimenzija.

Ako vratilo nije istokareno tehnički ispravno, često će biti malo predimenzionirano na sjedištu ležajeva, dok će ležajno kućište s unutarnje strane biti poddimenzionirano. Takav pristup se primjenjuje zato što je lakše po potrebi dodatno potokariti metal nego ga dodavati, pa je često praksa po radionama da vratilo bude deblje a unutarnja strana kućišta šira, čime se omogućava da ostane dovoljno metala u slučaju potrebe za dodatnim tokarenjem. Ponekad se za svaki slučaj ostavi previše metala s unutarnje strane kućišta pa se ležaj ugradi i tada bude stiješnjen na obodu vanjskog prstena. Druga krajnost je da se ležaj previše proširi na unutarnjem prstenu pod djelovanjem temperature i male zračnosti te brzo otkaže. Ležaj radi samo godinu dana a mogao bi raditi minimalno 5 i više godina da je ostao dimenzionalno nepromijenjen, čime se povisuju troškovi.

Često se rotor skraćuje uklanjanjem materijala na vanjskom obodu (tkz.trimming) kako bi se poboljšale peformanse pumpe, uštedjela energija i da omogućio rad pumpe radi bliže točki maksimalne učinkovitosti Q-h krivulje. Za proračun manjeg promjera rotora se primjenjuju zakoni hidrodinamike kada npr. rotor vanjskog promjera 240 mm treba smanjiti na promjer 225mm kako bi radna krivulja pumpe bila u skladu sa zahtjevima sustava cjevovoda. Kada se uklanja materijal na tokarskom stroju, rotor je u debalansu.

Uklanjanje materijala debljine 2 mm duž čitavog oboda može dovesti do velikog debalansa čitavog rotorskog sklopa kada pumpa ima brzinu vrtnje 1500 rpm ili više. Nakon uklanjanja materijala na tokarskom stroj, rotor treba dinamički balansirati.  Ukoliko radiona nema mogućnost balansiranja rotorskog sklopa, potrebno je poslati rotor na balansiranje da se osigura pravilan rad i spriječe pojačane vibracije. Također treba provjeriti dimenzije potrošnih prstena rotora i kućišta. Kada je pumpa sastavljena i spremna za povratak u postrojenje, tada je kasno razmišljati o balansiranju.

Vratila pumpi su podložna debalansu, trošenju materijala i djelovanju prevelikog opeterćenja- Sve navedeno su mehanički problemi koji dovode do savijanja vratila. Zato se provjerava stanje vratila na tokarskom stroju. Drugi način provjere je postavljanjem vratila na 2 nosača V oblika uz komparator. Vratilo se oslanja na sjedištima V nosača i komparator se postavlja na središte vratila kao što je prikazano na slici 1.

vratilonavnosacu

Slika 1.: Provjera je li vratilo savijeno (izvor)

Kada vrtite vratilo nazivnog promjera 200 mm i manje, odstupanje prikazano na komparatoru ne bi smjelo biti veće od 0,05 mm. Za vratila nazivnog promjera većeg od 300 mm do 600 mm dozvoljeno odstupanje je maksimalno 0,08 mm. Ako je vratilo savijeno, tijekom vrtnje će dodatno pritiskati ležajeve i elemente brtvenice te tako skratiti njihov životni vijek.

Gotovo svi ležajevi imaju zračnosti između unutarnjeg promjera ležaja i sjedišta na vratilu. Unutarnji promjer ležaja (tj. promjer unutarnjeg prstena) je manji od promjera vratila na mjestu montaže ležaja jer se montira sa čvrstim dosjedom, stoga je potrebno ležajeve uprešati ili zagrijati kako bi se povećao promjer unutarnjeg prstena prije montaže. Ako se ležaj pregrije, doći će do nejednolikog širenja i iskrivljenja konstrukcije pa će se skratiti životni vijek.

Mehaničke radione koriste indukcijske grijače ili stožaste grijače kako bi brzo zagrijale unutarnji prsten ležaja radi montaže. Međutim, termostat na grijaču može biti van kalibracije ili ga grijač uopće nema. U tom slučaju treba koristiti infracrveni termometar za praćenje i provjeru temeperatura ležaja. Ležaj se ne bi smio zagrijavati na više od 120°C prije montaže. Pregrijavanje ležajeva također skraćuje njihov životni vijek i dovodi do preranog otkazivanja.

Sva vratila imaju tokareno zaobljenje (r) na mjestu promjene poprečnog presjeka koje određuje mjesto nalijeganja ležaja na vratilo. Lice unutarnjeg prstena ležaja se treba osloniti na zaobljenje vratila po čitavom obodu čime se postiže položaj pod pravim kutem, što je prikazano na slici 2.

lezaj na vratilu i kucistuSlika 2.: Položaj ležaja na vratilu (izvor)

Nakon montaže se provjera je li prisutan razmak umetanjem mjernih listića debljine od 0,02mm do 0,05mm između unutarnjeg prstena ležaja i zaobljenja vratila u smjeru kazaljke na satu u položaju 3h, 6h, 9h i 12h, dakle po čitavom obodu. Kada se ležaj montira uprešavanjem tada obično nema razmaka ili je manja vjerojatnost da će se pojaviti.

Kada se montira prethodno zagrijan ležaj, tada ga treba “pridržati” pored zaobljenog dijela na sjedištu tako da ne dođe do sužavanja ležaja kada se ohladi. Hlađenje traje barem 3 do 5 min. Ako se ležaj ostavi kraće vrijeme, kasnije će biti posljedica u vidu naprezanja materijala i ubrzanog trošenja ležaja nakon montaže. Ako ležaj nije pravilno postavljen uz zaobljenje vratila, doći će do necentričnosti ležaja pa je provjera pomoću mjernih listića bitna da bi se kasnije vratilo neometano vrtjelo.

Posljednja dobra praksa je provjera centriranost usisne i tlačne cijevi da se izbjegne povlačenje pumpe i poništavanje centriranost agregata tj. uništavanje ležajeva i brtvenica. Postavite komparatore na glavčinu pumpe kada je spojka demontirana. Jedan komparator je postavljen sa prednje strane radi očitanja horizontalnog pomaka. Drugi komparator je postavljen na vrh glavčine radi očitanja vertikalnog pomaka. Na oba komparatora kazaljke moraju u tom položaju pokazivati 0.

Potom lagano otpustite vijeke koji spajaju usisnu i tlačnu prirubnicu na pumpi sa usisnom i tlačnom cijevi. Cijevi ne treba odvojiti, samo odmaknuti za 15mm do 20 mm od prirubnica. Vijek i matice možete ostaviti na mjestu. Ako se pritom na komparatorima pokažu pomaci od 0,02 mm ili više znači da cijevi povlače agregat i potrebno je napraviti korekciju položaja cijevi prije nego što se pumpa vrati na radnu poziciju nakon generalnog servisa. Ovaj korak se često zaboravlja. Velika je vjerojatnost da će se servisirana pumpa vratiti na mjesto s postojećim cijevima i imati kraći radni vijek zbog naprezanja uzrokovanih krutim cijevima.

Koju dobru praksu preporučujete pri servisu pumpe? Što smatrate manjkavim ili suvišnim? Podijelite iskustva u komentarima!

 

6 najčešćih tipova oštećenja vratila

Potaknuta vašim pitanjima i komentarima koje ste mi slali za članak Zašto se lomi vratilo pumpe? , danas donosim kratak pregled 6 osnovnih tipova oštećenja vratila te uzroka i posljedica za pumpu. Ovaj pregled vam može poslužiti kao podsjetnik ili šalabahter kada trebate obaviti osnovu detekciju što se dogodilo s vratilom rotacijskog stroja i pritom nemate previše vremena na raspolaganju.

Za detaljnije istraživanje uzroka koji su doveli do oštećenja vratila potrebno je primijeniti odgovarajuća ispitivanja te ponekad zatražiti dodatno mišljenje stručnjaka koji se bave materijalima i konstrukcijom strojnih dijelova. Za spriječavanje posljedica potreban vam je plan održavanja koji se dosljedno primjenjuje i obuhvaća preventivne i prediktivne tehnike.

DJelovanje sila na vratilo pumpe

Slika 1.: Djelovanje sila na vratilo centrifugalne pumpe

Krenimo redom:

1) Savijeno vratilo uzrokuje pretjerano radno opterećenje, djelovanje prevelikog momenta, kratko djelovanje udarnog opterećenja, te otkazivanje ležaja. Kažemo da je vratilo postalo kiflasto kada ga provjeravamo na stroju za balansiranje jer se tijekom balansiranja provjerava tkz. bacanje vratila odnosno njegov otklon nastao radi debalansa mase kada poprimi savijeni oblik.

Posljedice su uočljive kada tijekom rada rotacijski stroj ima povećane vibracije. Kada rastavimo pumpu vidjet ćemo oštećene ležajeve, rotor, potrošne prstene, oštećene elemente mehaničke brtvenice i reduktora.

2) Zamor materijala i nastanak pukotine na vratilu je uzrokovalo povećano naprezanje na skošenjima i zaobljenjima, koncentracija naprezanja na utoru za klin, nagle promjene dimenzija poprečnog presjeka, prevelika brzina vrtnje ili veliko torzijsko opterećenje. U ovom slučaju oštećenje ležajeva je najveća posljedica za pumpu.

3) Rupičasta korozija na površini vratila nastaje kada dođe do gibanja dijelova koji se montiraju s malim dosjednim tolerancijama. Započinje u obliku sitnih mikroskopskih udubljenja na površini materijala i s vremenom se povećava. Koroziji doprinose i kemijska svojstva radnog medija. Posljedica je oštećenje ležajeva, uljnog prstena, ponekad spojke i rotora na mjestu montaže na vratilo.

4) Necentriranost vratila pumpe se dogodi kada pumpa nije tehnički ispravno sastavljena tijekom servisa ili kada tijekom rada dođe do trošenja ležajeva a ponekad i zbog prevelikog opterećenja u radu. Posljedica se javlja u vidu povećanih vibracija kada je pumpa u radu te oštećenja ležajeva, rotora, potrošnih prstena, mehaničke brtvenice i reduktora.

5) Oštećena površina vratila nastaje djelovanjem korozije, onečišćenog radnog medija ili kada kemijska svojstva radnog medija nisu kompatibilna s metalom od kojeg je vratilo izrađeno. Oštećenja mogu nastati i prilikom izrade i djelovanje temperature veće od maksimalno dopuštene pri radu. Ovaj slučaj za posljedicu također ima oštećenje ležajeva u velikom broju slučajeva.

6) Izvijanje vratila se događa kada na vratilo djeluje povećano dinamičko opterećenje, nejednoliko opterećenje ili opterećenja u suprotnom smjeru od smjera vrtnje stroja. Ponekad se izvijanje dogodi i kada se prekorači kritična brzine vrtnje. Posljedica je oštećena kristalna struktura metala, oštećenje ležajeva, rotora, potrošnih prstena i dijelova mehaničke brtvenice.

Zasigurno ste primijetili kako se neki kvarovi ponavljaju za različite tipove oštećenja vratila. Zato treba više prakse prilikom zaključivanja o kojoj vrsti oštećenja se radi uz istovremeno promatranje tragova na vratilu i na ostalim dijelovima pumpe kada je rastavljena. Nadalje, treba provjeriti radne uvjete pumpe, pratećih cjevovoda i armature, kemijska i fizikalna svojstva radnog medija pomoću laboratorijske analize te revidirati plan preventivnog održavanja.

Koje tipove oštećenja vratila ste susretali? Kako ste otkrili uzroke? Podijelite iskustva u komentarima!